Researchers develop improved recycling process for carbon fibres

In recent years there has been an increased focus on the circular economy and a heightened demand for products made of recyclable materials, however many materials can only be recycled so many times before they begin to wear out.

This is the case with carbon fibre reinforced polymer (CFRP) composites, non-biodegradable materials which, until now, have lacked a viable recycling method.

CRFP composites are present in products such as wind turbines, aeroplane parts, vehicles such as cars and ships, and everyday technology such as laptops and mobile phones.

They are typically disposed of in landfills or by incineration, which pose significant threats to both the environment and public health.

The vast majority of existing recycling methods also cause a major reduction in the mechanical and physical properties of the recovered material, weakening its core functionality.

Researchers from the University of Sydney’s School of Civil Engineering have developed an optimised method for recycling CFRP composites while maintaining 90 percent of their original strength.

“Globally and in Australia there has been a march towards better recycling processes, however there is often the belief that a material can be recycled an infinite amount of times – this simply isn’t the case. Most recycling processes diminish mechanical or physical properties of materials,” said the study’s lead researcher Dr Ali Hadigheh.

“Until now, it has been impossible to continuously recycle products made of carbon fibres. Given that most recycling involves shredding, cutting or grinding, fibres are worn out, decreasing a future product’s viability,” said Dr Hadigheh.

“This presents a huge challenge and threat to our environment, as it has led to the production of virgin carbon fibre which contributes significantly to greenhouse gas emissions.

“To combat this issue and to support a true circular economy, we developed an efficient and cost-effective method for recycling carbon fibre, which is present in tablets through to BMWs.”

“To do this we used a two phased, optimised process. The first step is called “pyrolysis”, which breaks down a material using heat, but significantly chars the materials which prevents it from developing a good bond with a resin matrix. The second process, oxidation, uses high temperatures to remove this char.

“Pyrolysis and oxidation alone are not enough to preserve carbon fibres and these processes have existed for some time already. To ensure a high quality recovery and economic efficiency, thermal decomposition of CFRPs need to be guided by analysing the energy required to initiate a chemical reaction in the composit, and separate carbon fibres from the surrounding resin matrix.

“What makes our method so successful is that we have added specific parameters – such as temperature, heating rate, atmosphere or time spent being oxidised and heated – that preserve the functionality of carbon fibre.”

“We embarked on the project with the aim of producing high grade, low cost structural materials made from recycled carbon fibre composites, for use in industries from aerospace and automotive through to sporting goods and renewable energy and construction.”

In 2010, the global production of fibre reinforced polymers (FRP) was approximately 6 million tonnes with a projected growth of 300 percent in the next decade. With this projection, the consumption of FRPs will exceed 18 million tonnes by 2025, with an end-product value of AUD $80 billion.

“The 2016 Australian National Waste Report concludes that the use of composite materials is creating future challenges to recycling. Plainly put, if we do not develop efficient and cost-effective methods to recycle carbon fibre composites, we risk damaging the environment significantly,” said Dr Hadigheh.

The United States, Japan and China lead the world in carbon fibre manufacturing. The researchers hope to increase the capacity of the Australian industry and work with manufacturers of wind turbines and commercial aircraft, as well as producers of sporting goods, and the construction, automotive and ship-building industries.

###

DECLARATION:

The research was supported by the Australian Government through the Australian Research Council’s Discovery Early Career Researcher Award (DECRA) fellowship scheme (project number DE200100406), which was received by Dr Hadigheh.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Products You May Like

Leave a Reply

Your email address will not be published. Required fields are marked *